On multiprocessor task scheduling using efficient state space search approaches

نویسندگان

  • Yu-Kwong Kwok
  • Ishfaq Ahmad
چکیده

Obtaining an optimal schedule for a set of precedence-constrained tasks is a well-known NP-complete problem in its general form. In view of the intractability of the problem, most of the previous work relies on heuristics that try to find reasonably high quality solutions in an acceptable amount of time. While optimal polynomial-time algorithms are known only for a few simple cases (and in other cases can only be obtained through an exhaustive search with prohibitively high time complexity), they may be critically important for applications in which performance is the prime objective. Optimal solutions can also serve as a reference to test the performance of various heuristics. Moreover, an optimal schedule for a program at hand needs to be determined only once (and off-line) but the program using that schedule is in general executed several times. In this paper, we propose optimal algorithms for static scheduling of task graphs with arbitrary parameters to multiple homogeneous processors. The first algorithm is based on the A∗ search technique and uses a computationally efficient cost function for guiding the search with reduced complexity. Additionally, we propose a number of effective state-pruning techniques to reduce the search space. For further lowering the complexity, we propose an efficient parallelization of the search algorithm. We parallelize the algorithm with reduced interprocessor communication as well as with static and dynamic load-balancing schemes to evenly distribute the search states to the processors. We also propose an approximate algorithm that guarantees a bounded deviation from the optimal solution but executes in a considerably shorter time. Based on an extensive experimental evaluation of the algorithms, we conclude that the parallel algorithm with pruning techniques is an efficient scheme for generating optimal solutions of reasonably large problems while the approximate algorithm is effective if slightly degraded solutions are acceptable. © 2005 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

Improved Multiprocessor Task Scheduling Using Genetic Algorithms

Efficient multiprocessor task scheduling is a long-studied and difficult problem that continues to be a topic of considerable research. Approximate solutions to this NPcomplete problem typically combine search techniques and heuristics. Traditional solutions require a deterministic search of the solution space, which is computationally and temporally exhaustive. Genetic algorithms are known to ...

متن کامل

An Efficient Algorithm for Compile-time Task Scheduling Problem on Heterogeneous Computing Systems

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic (guided-random-search-based) methods for finding a suboptimal schedule. Due to the large solution space that a meta-heuristic algorithm is required to cover,...

متن کامل

A new Shuffled Genetic-based Task Scheduling Algorithm in Heterogeneous Distributed Systems

Distributed systems such as Grid- and Cloud Computing provision web services to their users in all of the world. One of the most important concerns which service providers encounter is to handle total cost of ownership (TCO). The large part of TCO is related to power consumption due to inefficient resource management. Task scheduling module as a key component can has drastic impact on both user...

متن کامل

Pre-scheduling and Scheduling of Task Graph on Homogeneous Multiprocessor Systems

Task graph scheduling is a multi-objective optimization and NP-hard problem. In this paper a new algorithm on homogeneous multiprocessors systems is proposed. Basically, scheduling algorithms are targeted to balance the two parameters of time and energy consumption. These two parameters are up to a certain limit in contrast with each other and improvement of one causes reduction in the othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Parallel Distrib. Comput.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2005